

High-Precision Ball Bearings

'RELIEVING THE PAIN' – DENTAL BEARINGS WITH TILT COMPENSATION

Gebrüder Reinfurt GmbH & Co. KG

1. INTRODUCTION

A screaming, tormenting humming - many connect the sound of the dentist's drill to aching teeth.

Root canal treatment is not a pleasant experience in itself. Additional high-frequency sounds of the supposed torture tool squeaking at the patient's eardrum inevitably lead to a negative connotation of the dentist and the dental devices.

Besides the pain the patient might feel on the dentist chair, a dental handpiece, is also a "painful" challenge for bearings.

2. DENTAL HANDPIECE / A HIGH-TECH SYSTEM

Dental Handpieces

- The dental handpiece is part of the basic equipment of every dental treatment
- It incorporates the various tools necessary for dental care

Key data

- pneumatic drive of the turbine
 → up to 500,000 rpm
- X-arrangement of ball bearings
 → O-rings and wave washers
- hollow shaft with integrated chuck
 → tool holder

3. DENTAL BEARINGS – A COMPLEX TRIBO SYSTEM

Dental bearing – customized design to beat the challenges:

- The harsh environment of dental bearings in a dental handpiece, are one of the most challenging operation conditions for rolling bearings
- Several key features are needed to provide the best bearings for this special & complex tribological system

Operating conditions

- Speed up to 500.000 rpm (n*d_m = 1.5Mio – 2Mio mm/min)
- Fast acceleration / deceleration of the bearing
- Air flow through the bearing during operation (lube discharge)
- Poor lubrication / only re-oiling during cleaning cycles
- 134°C (273°F) hot steam sterilization
- Partly contaminated by sanitizer (strong bases)

4. FAILURE MECHANISMS OF TURBINE BEARINGS

There is one more challenge for the bearings:

- High asymmetric external load of the drilling tool (tilted inner ring) and/or
- Tilted assembly (tilted outer ring)

*Standard parameter for durability tests

5. SOLUTION: BALL BEARING WITH NEW RACEWAY DESIGN

How to deal with high asymmetric external load and/or the sub-optimal assembly???

'three-way' outer ring design

A raceway with three differently curved zones \rightarrow patent pending

R1

standard radius for standard operating condition

- \rightarrow no difference to standard raceway
- \rightarrow "smooth" transition from R1 to R2

R2

larger radii for tilted operating condition

- \rightarrow R2 \approx 2 x R1
- \rightarrow contact angle $\pm \alpha$ determines the segment width of the middle raceway

Result:

Reduction of the elliptical character of the running track / approximation to a circular path

6. VALIDATION: BEARING NOISE IMPROVEMENTS

Dynamic simulation using LS-DYNA

- Discretization/Model
 - → 545.477 Nodes → 571.042 Elements → 37 Components
- considered boundary conditions
 - \rightarrow drill force (3 N)
 - \rightarrow wave washer force (2 N)
 - \rightarrow defined friction coefficents
 - \rightarrow hyper elastic material behavior (O-ring)
 - \rightarrow steel and ceramic material properties

Cage kinematics

- cage deflections
 → true scaled
- simulation time
 → 7 ms
- operating conditions
 → tilted outer ring

<u>'three-way'</u>

 \rightarrow smooth movement of the cage and the drill tip

<u>'standard raceway'</u>

 \rightarrow chaotic movement of the cage and the drill tip due to high dynamic forces

9. CONCLUSION & FURTHER VALIDATION

Benefits

- improvement of the cage kinematics
- lower energy density less cage wear \rightarrow longer bearing life
- supporting feature to cage material XTRAIon[®] and special cage designs
- relieving the pain
 - → patient: lower running noise when tilted
 → dentist: extended service intervals
 → handpiece manufacturer: decreased warranty claims

Further validation

- completion of internal life tests (to increase statistics/randomly tilting)
- completion of field testing (>1 year)

"RELIEVING THE PAIN" -DENTAL BEARINGS WITH TILT COMPENSATION

